Last searches

Results for *

Displaying results 1 to 3 of 3.

  1. Complexity in Factor Pricing Models
    Published: 2023
    Publisher:  SSRN, [S.l.]

    We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio and average pricing errors—is improving in model parameterization (or... more

    Access:
    Verlag (kostenfrei)
    Resolving-System (kostenfrei)
    Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, Universitätsbibliothek
    No inter-library loan
    ZBW - Leibniz-Informationszentrum Wirtschaft, Standort Kiel
    No inter-library loan

     

    We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio and average pricing errors—is improving in model parameterization (or “complexity”). Our results predict that the best asset pricing models (in terms of expected out-of-sample performance) have an extremely large number of factors (more than the number of training observations or base assets). Our empirical findings verify the theoretically predicted “virtue of complexity” in the cross-section of stock returns and find that the best model combines tens of thousands of factors. We also derive the feasible Hansen- Jagannathan (HJ) bound: The maximal Sharpe ratio achievable by a feasible portfolio strategy. The infeasible HJ bound massively overstates the achievable maximal Sharpe ratio due to a complexity wedge that we characterize

     

    Export to reference management software   RIS file
      BibTeX file
    Source: Union catalogues
    Language: English
    Media type: Book
    Format: Online
    Other identifier:
    Series: Swiss Finance Institute Research Paper ; No. 23-19
    Subjects: Portfolio choice; asset pricing tests; optimization; expected returns; predictability
    Other subjects: Array
    Scope: 1 Online-Ressource (148 p)
    Notes:

    Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 13, 2023 erstellt

  2. The performance of time series forecasting based on classical and machine learning methods for S&P 500 index
    Published: 2023
    Publisher:  University of Warsaw, Faculty of Economic Sciences, Warsaw

    Access:
    Verlag (kostenfrei)
    Verlag (kostenfrei)
    ZBW - Leibniz-Informationszentrum Wirtschaft, Standort Kiel
    Nicht speichern
    No inter-library loan
    Export to reference management software   RIS file
      BibTeX file
    Source: Union catalogues
    Language: English
    Media type: Book
    Format: Online
    Series: Working papers / University of Warsaw, Faculty of Economic Sciences ; no. 2023, 5 = 412
    Subjects: deep learning; recurrent neural networks; ARIMA; algorithmic investment strategies; trading systems; LSTM; walk-forward process; optimization
    Scope: 1 Online-Ressource (circa 36 Seiten), Illustrationen
  3. Optimal forecast combination with mean absolute error loss
    Published: 2023
    Publisher:  Australian National University, Crawford School of Public Policy, Canberra

    Access:
    Verlag (kostenfrei)
    Verlag (kostenfrei)
    Verlag (kostenfrei)
    ZBW - Leibniz-Informationszentrum Wirtschaft, Standort Kiel
    VSP 1716
    No inter-library loan
    Export to reference management software   RIS file
      BibTeX file
    Source: Union catalogues
    Language: English
    Media type: Book
    Format: Online
    Series: CAMA working paper series ; 2023, 59 (November 2023)
    Subjects: Forecasting; forecast combination; optimization; mean absolute error; optimal weights
    Scope: 1 Online-Ressource (circa 32 Seiten), Illustrationen