Narrow Search
Search narrowed by
Last searches

Results for *

Displaying results 1 to 2 of 2.

  1. Using the Google Places API and Google Trends data to develop high frequency indicators of economic activity
    Published: Dec 2021
    Publisher:  International Monetary Fund, Washington, DC

    As the pandemic heigthened policymakers' demand for more frequent and timely indicators to assess economic activities, traditional data collection and compilation methods to produce official indicators are falling short-triggering stronger interest... more

    Access:
    Verlag (kostenfrei)
    Verlag (kostenfrei)
    Resolving-System (kostenfrei)
    Verlag (kostenfrei)
    Orient-Institut Beirut
    Online
    No inter-library loan
    Staatsbibliothek zu Berlin - Preußischer Kulturbesitz, Haus Potsdamer Straße
    No inter-library loan
    Universitätsbibliothek Braunschweig
    No inter-library loan
    Staats- und Universitätsbibliothek Bremen
    No inter-library loan
    Universitätsbibliothek Erfurt / Forschungsbibliothek Gotha, Universitätsbibliothek Erfurt
    No inter-library loan
    Bibliothek der Pädagogischen Hochschule Freiburg/Breisgau
    No inter-library loan
    Niedersächsische Staats- und Universitätsbibliothek Göttingen
    No inter-library loan
    Universitäts- und Landesbibliothek Sachsen-Anhalt / Zentrale
    No inter-library loan
    Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, Universitätsbibliothek
    No inter-library loan
    Technische Universität Hamburg, Universitätsbibliothek
    No inter-library loan
    Technische Informationsbibliothek (TIB) / Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
    No inter-library loan
    Duale Hochschule Baden-Württemberg Heidenheim, Bibliothek
    e-Book Nationallizenz
    No inter-library loan
    Thüringer Universitäts- und Landesbibliothek
    No inter-library loan
    Fachhochschule Kiel, Zentralbibliothek
    No inter-library loan
    ZBW - Leibniz-Informationszentrum Wirtschaft, Standort Kiel
    VS 301
    No inter-library loan
    Universitätsbibliothek Leipzig
    No inter-library loan
    Leuphana Universität Lüneburg, Medien- und Informationszentrum, Universitätsbibliothek
    No inter-library loan
    Duale Hochschule Baden-Württemberg Mosbach, Bibliothek
    E-Book Nationallizenz IMF
    No inter-library loan
    Hochschule Offenburg, University of Applied Sciences, Bibliothek Campus Offenburg
    E-Book International Monetary Fund
    No inter-library loan
    Hochschulbibliothek Pforzheim, Bereichsbibliothek Technik und Wirtschaft
    e-Book International Monetary Fund eLibrary
    No loan of volumes, only paper copies will be sent
    Hochschule Albstadt-Sigmaringen, Bibliothek Sigmaringen
    No loan of volumes, only paper copies will be sent
    Duale Hochschule Baden-Württemberg Villingen-Schwenningen, Bibliothek
    E_Book IMF
    No inter-library loan

     

    As the pandemic heigthened policymakers' demand for more frequent and timely indicators to assess economic activities, traditional data collection and compilation methods to produce official indicators are falling short-triggering stronger interest in real time data to provide early signals of turning points in economic activity. In this paper, we examine how data extracted from the Google Places API and Google Trends can be used to develop high frequency indicators aligned to the statistical concepts, classifications, and definitions used in producing official measures. The approach is illustrated by use of Google data-derived indicators that predict well the GDP trajectories of selected countries during the early stage of COVID-19. To this end, we developed a methodological toolkit for national compilers interested in using Google data to enhance the timeliness and frequency of economic indicators

     

    Export to reference management software   RIS file
      BibTeX file
  2. Using the Google Places API and Google Trends data to develop high frequency indicators of economic activity
    Published: Dec 2021
    Publisher:  International Monetary Fund, Washington, DC

    As the pandemic heigthened policymakers' demand for more frequent and timely indicators to assess economic activities, traditional data collection and compilation methods to produce official indicators are falling short-triggering stronger interest... more

    Access:
    Verlag (kostenfrei)
    Verlag (kostenfrei)
    Resolving-System (kostenfrei)
    Verlag (kostenfrei)
    Staatsbibliothek zu Berlin - Preußischer Kulturbesitz, Haus Unter den Linden
    Unlimited inter-library loan, copies and loan

     

    As the pandemic heigthened policymakers' demand for more frequent and timely indicators to assess economic activities, traditional data collection and compilation methods to produce official indicators are falling short-triggering stronger interest in real time data to provide early signals of turning points in economic activity. In this paper, we examine how data extracted from the Google Places API and Google Trends can be used to develop high frequency indicators aligned to the statistical concepts, classifications, and definitions used in producing official measures. The approach is illustrated by use of Google data-derived indicators that predict well the GDP trajectories of selected countries during the early stage of COVID-19. To this end, we developed a methodological toolkit for national compilers interested in using Google data to enhance the timeliness and frequency of economic indicators

     

    Export to reference management software   RIS file
      BibTeX file